If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2+19x+5=0
a = -4; b = 19; c = +5;
Δ = b2-4ac
Δ = 192-4·(-4)·5
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-21}{2*-4}=\frac{-40}{-8} =+5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+21}{2*-4}=\frac{2}{-8} =-1/4 $
| -8h-13+6h=7 | | 100x-40=20(5x-2) | | 8x+4x-17=57 | | -19-4b=-15 | | +-8r=+-6r+-12 | | 17.33=s+5.2 | | -80=j+740 | | 7x+1=+7x+1 | | 12x+(x+13)=15x-5 | | e/12-7=27 | | -3n-4+9n=12 | | x-18=11=12 | | h+4=946 | | (3/4x)+(-1/4x)+14=3 | | 6t−31=41 | | 8*4k-4=-5-32 | | d+899=789 | | -21v=-546 | | 2)7-t)=t+29 | | 34x+32=34x+88 | | -104=8(5+3v) | | 8+b/2=16 | | 1-10v=-169 | | z−108=408 | | 7x+18x-7=5(5x+8) | | -9+x/10=-10 | | 15+2r=4r−15 | | 17=-6t-7 | | 25j=400 | | 17=1/2x+3 | | 952=17s | | 93+12m=3(3m-1)+96 |